A Data Warehouse-Based System for Service Customization Recommendations in Product-Service Systems

Nowadays, manufacturers are shifting from a traditional product-centric business paradigm to a service-centric one by offering products that are accompanied by services, which is known as Product-Service Systems (PSSs). PSS customization entails configuring products with varying degrees of different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-03, Vol.22 (6), p.2118
Hauptverfasser: Esheiba, Laila, Helal, Iman M A, Elgammal, Amal, El-Sharkawi, Mohamed E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, manufacturers are shifting from a traditional product-centric business paradigm to a service-centric one by offering products that are accompanied by services, which is known as Product-Service Systems (PSSs). PSS customization entails configuring products with varying degrees of differentiation to meet the needs of various customers. This is combined with service customization, in which configured products are expanded by customers to include smart IoT devices (e.g., sensors) to improve product usage and facilitate the transition to smart connected products. The concept of PSS customization is gaining significant interest; however, there are still numerous challenges that must be addressed when designing and offering customized PSSs, such as choosing the optimum types of sensors to install on products and their adequate locations during the service customization process. In this paper, we propose a data warehouse-based recommender system that collects and analyzes large volumes of product usage data from similar products to the product that the customer needs to customize by adding IoT smart devices. The analysis of these data helps in identifying the most critical parts with the highest number of incidents and the causes of those incidents. As a result, sensor types are determined and recommended to the customer based on the causes of these incidents. The utility and applicability of the proposed RS have been demonstrated through its application in a case study that considers the rotary spindle units of a CNC milling machine.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22062118