Design and Implementation of a New Wireless Carotid Neckband Doppler System with Wearable Ultrasound Sensors: Preliminary Results

Noninvasive monitoring of blood flow in the carotid artery is important for evaluating not only cerebrovascular but also cardiovascular diseases. In this paper, a wireless neckband ultrasound Doppler system, in which two 2.5-MHz ultrasonic sensors are utilized for acquiring Doppler signals from both...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019-06, Vol.9 (11), p.2202
Hauptverfasser: Song, Ilseob, Yoon, Jongmin, Kang, Jinbum, Kim, Min, Jang, Won Seuk, Shin, Na-Young, Yoo, Yangmo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Noninvasive monitoring of blood flow in the carotid artery is important for evaluating not only cerebrovascular but also cardiovascular diseases. In this paper, a wireless neckband ultrasound Doppler system, in which two 2.5-MHz ultrasonic sensors are utilized for acquiring Doppler signals from both carotid arteries, is presented for continuously evaluating blood flow dynamics. In the developed wireless neckband Doppler system, the acquired Doppler signals are quantized by 14-bit analog-to-digital-converters running at 40 MHz, and pre-processing operations (i.e., demodulation and clutter filtering) are performed in an embedded field programmable gate array chip. Then, these data are transferred to an external smartphone (i.e., Galaxy S7, Samsung Electronics Co., Suwon, Korea) via Bluetooth 2.0. Post-processing (i.e., Fourier transform and image processing) is performed using an embedded application processor in the smartphone. The developed carotid neckband Doppler system was evaluated with phantom and in vivo studies. In a phantom study, the neckband Doppler system showed comparable results with a commercial ultrasound machine in terms of peak systolic velocity and resistive index, i.e., 131.49 ± 3.97 and 0.75 ± 0.02 vs. 131.89 ± 2.06 and 0.74 ± 0.02, respectively. In addition, in the in vivo study, the neckband Doppler system successfully demonstrated its capability to continuously evaluate hemodynamics in both common carotid arteries. These results indicate that the developed wireless neckband Doppler system can be used for continuous monitoring of blood flow dynamics in the common carotid arteries in point-of-care settings.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9112202