Existence of Nonoscillatory Solutions to Second-Order Neutral Delay Dynamic Equations on Time Scales

We employ Kranoselskii's fixed point theorem to establish the existence of nonoscillatory solutions to the second-order neutral delay dynamic equation [x(t)+p(t)x(τ0 (t))]ΔΔ +q1 (t)x(τ1 (t))-q2 (t)x(τ2 (t))=e(t) on a time scale ... To dwell upon the importance of our results, one interesting ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2009-01, Vol.2009 (1), p.562329-562329
Hauptverfasser: Li, Tongxing, Han, Zhenlai, Sun, Shurong, Yang, Dianwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We employ Kranoselskii's fixed point theorem to establish the existence of nonoscillatory solutions to the second-order neutral delay dynamic equation [x(t)+p(t)x(τ0 (t))]ΔΔ +q1 (t)x(τ1 (t))-q2 (t)x(τ2 (t))=e(t) on a time scale ... To dwell upon the importance of our results, one interesting example is also included.
ISSN:1687-1839
1687-1847
1687-1847
DOI:10.1186/1687-1847-2009-562329