Existence of Nonoscillatory Solutions to Second-Order Neutral Delay Dynamic Equations on Time Scales
We employ Kranoselskii's fixed point theorem to establish the existence of nonoscillatory solutions to the second-order neutral delay dynamic equation [x(t)+p(t)x(τ0 (t))]ΔΔ +q1 (t)x(τ1 (t))-q2 (t)x(τ2 (t))=e(t) on a time scale ... To dwell upon the importance of our results, one interesting ex...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2009-01, Vol.2009 (1), p.562329-562329 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We employ Kranoselskii's fixed point theorem to establish the existence of nonoscillatory solutions to the second-order neutral delay dynamic equation [x(t)+p(t)x(τ0 (t))]ΔΔ +q1 (t)x(τ1 (t))-q2 (t)x(τ2 (t))=e(t) on a time scale ... To dwell upon the importance of our results, one interesting example is also included. |
---|---|
ISSN: | 1687-1839 1687-1847 1687-1847 |
DOI: | 10.1186/1687-1847-2009-562329 |