t-channel singularities in cosmology and particle physics
The t-channel singularity of a cross section for a binary 2→2 scattering occurs when the particle exchanged in the t-channel is kinematically allowed to be on its mass shell, that is when the process can be viewed as a sequence of two physical subprocesses: a two-body decay 1→2 and an inverse decay...
Gespeichert in:
Veröffentlicht in: | Nuclear physics. B 2022-11, Vol.984, p.115967, Article 115967 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The t-channel singularity of a cross section for a binary 2→2 scattering occurs when the particle exchanged in the t-channel is kinematically allowed to be on its mass shell, that is when the process can be viewed as a sequence of two physical subprocesses: a two-body decay 1→2 and an inverse decay 2→1. We derive conditions for the singularity to be present in a binary process. A class of divergent cross sections for Standard Model processes has been determined and illustrated by the weak analog of the Compton scattering Ze−→Ze−. After critically reviewing regularization methods proposed in literature, we discuss singular processes that occur in a medium composed of particles in thermal equilibrium. The medium is shown to regulate the singularities naturally as particles acquire a non-zero width. We demonstrate a possible cosmological application by calculating thermally averaged cross section for an elastic scattering within a simple scalar model. The transition probability, which is divergent in vacuum, becomes finite when the process occurs in a thermal bath due to the imaginary part of the t-channel mediator's self-energy computed within the Keldysh-Schwinger formalism. |
---|---|
ISSN: | 0550-3213 1873-1562 |
DOI: | 10.1016/j.nuclphysb.2022.115967 |