Laser-plasma lens for laser-wakefield accelerators

Thanks to their compactness and unique properties, laser-wakefield accelerators are currently considered for several innovative applications. However, many of these applications—and especially those that require beam transport—are hindered by the large divergence of laser-accelerated beams. Here we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review special topics. PRST-AB. Accelerators and beams 2014-12, Vol.17 (12), p.121301, Article 121301
Hauptverfasser: Lehe, R., Thaury, C., Guillaume, E., Lifschitz, A., Malka, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thanks to their compactness and unique properties, laser-wakefield accelerators are currently considered for several innovative applications. However, many of these applications—and especially those that require beam transport—are hindered by the large divergence of laser-accelerated beams. Here we propose a collimating concept that relies on the strong radial electric field of the laser-wakefield to reduce this divergence. This concept utilizes an additional gas jet, placed after the laser-wakefield accelerator. When the laser pulse propagates through this additional gas jet, it drives a wakefield which can refocus the trailing electron bunch. Particle-in-cell simulations demonstrate that this approach can reduce the divergence by at least a factor of 3 for realistic electron bunches.
ISSN:1098-4402
1098-4402
2469-9888
DOI:10.1103/PhysRevSTAB.17.121301