Interval Edge-Colorings of Cartesian Products of Graphs I

A proper edge-coloring of a graph G with colors 1, . . . , t is an interval t-coloring if all colors are used and the colors of edges incident to each vertex of G form an interval of integers. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. Let be the se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discussiones Mathematicae. Graph Theory 2013-01, Vol.33 (3), p.613-632
Hauptverfasser: Petrosyan, Petros A., Khachatrian, Hrant H., Tananyan, Hovhannes G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A proper edge-coloring of a graph G with colors 1, . . . , t is an interval t-coloring if all colors are used and the colors of edges incident to each vertex of G form an interval of integers. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. Let be the set of all interval colorable graphs. For a graph G ∈ , the least and the greatest values of t for which G has an interval t-coloring are denoted by w(G) and W(G), respectively. In this paper we first show that if G is an r-regular graph and G ∈ , then W(G⃞Pm) ≥ W(G) + W(Pm) + (m − 1)r (m ∈ N) and W(G⃞C2n) ≥ W(G) +W(C2n) + nr (n ≥ 2). Next, we investigate interval edge-colorings of grids, cylinders and tori. In particular, we prove that if G⃞H is planar and both factors have at least 3 vertices, then G⃞H N and w(G⃞H) ≤ 6. Finally, we confirm the first author’s conjecture on the n-dimensional cube Qn and show that Qn has an interval t-coloring if and only if n ≤ t ≤
ISSN:2083-5892
1234-3099
2083-5892
DOI:10.7151/dmgt.1693