The effect of deformation of absorbing scatterers on Mie-type signatures in infrared microspectroscopy

Mie-type scattering features such as ripples (i.e., sharp shape-resonance peaks) and wiggles (i.e., broad oscillations), are frequently-observed scattering phenomena in infrared microspectroscopy of cells and tissues. They appear in general when the wavelength of electromagnetic radiation is of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-02, Vol.11 (1), p.4675-4675, Article 4675
Hauptverfasser: Brandsrud, Maren Anna, Blümel, Reinhold, Solheim, Johanne Heitmann, Kohler, Achim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mie-type scattering features such as ripples (i.e., sharp shape-resonance peaks) and wiggles (i.e., broad oscillations), are frequently-observed scattering phenomena in infrared microspectroscopy of cells and tissues. They appear in general when the wavelength of electromagnetic radiation is of the same order as the size of the scatterer. By use of approximations to the Mie solutions for spheres, iterative algorithms have been developed to retrieve pure absorbance spectra. However, the question remains to what extent the Mie solutions, and approximations thereof, describe the extinction efficiency in practical situations where the shapes of scatterers deviate considerably from spheres. The aim of the current study is to investigate how deviations from a spherical scatterer can change the extinction properties of the scatterer in the context of chaos in wave systems. For this purpose, we investigate a chaotic scatterer and compare it with an elliptically shaped scatterer, which exhibits only regular scattering. We find that chaotic scattering has an accelerating effect on the disappearance of Mie ripples. We further show that the presence of absorption and the high numerical aperture of infrared microscopes does not explain the absence of ripples in most measurements of biological samples.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-84064-5