scPriorGraph: constructing biosemantic cell-cell graphs with prior gene set selection for cell type identification from scRNA-seq data

Cell type identification is an indispensable analytical step in single-cell data analyses. To address the high noise stemming from gene expression data, existing computational methods often overlook the biologically meaningful relationships between genes, opting to reduce all genes to a unified data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2024-08, Vol.25 (1), p.207-29, Article 207
Hauptverfasser: Cao, Xiyue, Huang, Yu-An, You, Zhu-Hong, Shang, Xuequn, Hu, Lun, Hu, Peng-Wei, Huang, Zhi-An
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell type identification is an indispensable analytical step in single-cell data analyses. To address the high noise stemming from gene expression data, existing computational methods often overlook the biologically meaningful relationships between genes, opting to reduce all genes to a unified data space. We assume that such relationships can aid in characterizing cell type features and improving cell type recognition accuracy. To this end, we introduce scPriorGraph, a dual-channel graph neural network that integrates multi-level gene biosemantics. Experimental results demonstrate that scPriorGraph effectively aggregates feature values of similar cells using high-quality graphs, achieving state-of-the-art performance in cell type identification.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-024-03357-w