Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant

Loss of function mutations of particular plant ( ) genes confer durable and broad-spectrum penetration resistance against powdery mildew fungi. Here, we combined genetic, transcriptomic and metabolomic analyses to explore the defense mechanisms in the fully resistant triple mutant. We found that thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in plant science 2017-06, Vol.8, p.1006-1006
Hauptverfasser: Kuhn, Hannah, Lorek, Justine, Kwaaitaal, Mark, Consonni, Chiara, Becker, Katia, Micali, Cristina, Ver Loren van Themaat, Emiel, Bednarek, Paweł, Raaymakers, Tom M, Appiano, Michela, Bai, Yuling, Meldau, Dorothea, Baum, Stephani, Conrath, Uwe, Feussner, Ivo, Panstruga, Ralph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Loss of function mutations of particular plant ( ) genes confer durable and broad-spectrum penetration resistance against powdery mildew fungi. Here, we combined genetic, transcriptomic and metabolomic analyses to explore the defense mechanisms in the fully resistant triple mutant. We found that this genotype unexpectedly overcomes the requirement for indolic antimicrobials and defense-related secretion, which are critical for incomplete resistance of single mutants. Comparative microarray-based transcriptome analysis of mutants and wild type plants upon inoculation revealed an increased and accelerated accumulation of many defense-related transcripts. Despite the biotrophic nature of the interaction, this included the non-canonical activation of a jasmonic acid/ethylene-dependent transcriptional program. In contrast to a non-adapted powdery mildew pathogen, the adapted powdery mildew fungus is able to defeat the accumulation of defense-relevant indolic metabolites in a MLO protein-dependent manner. We suggest that a broad and fast activation of immune responses in plants can compensate for the lack of single or few defense pathways. In addition, our results point to a role of Arabidopsis MLO2, MLO6, and MLO12 in enabling defense suppression during invasion by adapted powdery mildew fungi.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2017.01006