Aspiring Antifungals: Review of Current Antifungal Pipeline Developments

Invasive fungal infections are associated with significant morbidity and mortality, and their management is restricted to a variety of agents from five established classes of antifungal medication. In practice, existing antifungal agents are often constrained by dose-limiting toxicities, drug intera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fungi (Basel) 2020-03, Vol.6 (1), p.28
Hauptverfasser: Gintjee, Thomas J, Donnelley, Monica A, Thompson, 3rd, George R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Invasive fungal infections are associated with significant morbidity and mortality, and their management is restricted to a variety of agents from five established classes of antifungal medication. In practice, existing antifungal agents are often constrained by dose-limiting toxicities, drug interactions, and the routes of administration. An increasing prevalence of invasive fungal infections along with rising rates of resistance and the practical limitations of existing agents has created a demand for the development of new antifungals, particularly those with novel mechanisms of action. This article reviews antifungal agents currently in various stages of clinical development. New additions to existing antifungal classes will be discussed, including SUBA-itraconazole, a highly bioavailable azole, and amphotericin B cochleate, an oral amphotericin formulation, as well as rezafungin, a long-acting echinocandin capable of once-weekly administration. Additionally, novel first-in-class agents such as ibrexafungerp, an oral glucan synthase inhibitor with activity against various resistant fungal isolates, and olorofim, a pyrimidine synthesis inhibitor with a broad spectrum of activity and oral formulation, will be reviewed. Various other innovative antifungal agents and classes, including MGCD290, tetrazoles, and fosmanogepix, will also be examined.
ISSN:2309-608X
2309-608X
DOI:10.3390/jof6010028