On the Solution of Equations by Extended Discretization

The method of discretization is used to solve nonlinear equations involving Banach space valued operators using Lipschitz or Hölder constants. But these constants cannot always be found. That is why we present results using ω− continuity conditions on the Fréchet derivative of the operator involved....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computation 2020-09, Vol.8 (3), p.69
Hauptverfasser: Argyros, Gus I., Argyros, Michael I., Regmi, Samundra, Argyros, Ioannis K., George, Santhosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The method of discretization is used to solve nonlinear equations involving Banach space valued operators using Lipschitz or Hölder constants. But these constants cannot always be found. That is why we present results using ω− continuity conditions on the Fréchet derivative of the operator involved. This way, we extend the applicability of the discretization technique. It turns out that if we specialize ω− continuity our new results improve those in the literature too in the case of Lipschitz or Hölder continuity. Our analysis includes tighter upper error bounds on the distances involved.
ISSN:2079-3197
2079-3197
DOI:10.3390/computation8030069