Coefficients and Fekete–Szegö Functional Estimations of Bi-Univalent Subclasses Based on Gegenbauer Polynomials

Subclasses of analytic and bi-univalent functions have been extensively improved and utilized for estimating the Taylor–Maclaurin coefficients and the Fekete–Szegö functional. In this paper, we consider a certain subclass of normalized analytic and bi-univalent functions. These functions have invers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-07, Vol.11 (13), p.2852
Hauptverfasser: Hussen, Abdulmtalb, Zeyani, Abdelbaset
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Subclasses of analytic and bi-univalent functions have been extensively improved and utilized for estimating the Taylor–Maclaurin coefficients and the Fekete–Szegö functional. In this paper, we consider a certain subclass of normalized analytic and bi-univalent functions. These functions have inverses that possess a bi-univalent analytic continuation to an open unit disk and are associated with orthogonal polynomials; namely, Gegenbauer polynomials that satisfy subordination conditions on the open unit disk. We use this subclass to derive new approximations for the second and third Taylor–Maclaurin coefficients and the Fekete–Szegö functional. Furthermore, we discuss several new results that arise when we specialize the parameters used in our fundamental findings.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11132852