Realization of an inherent time crystal in a dissipative many-body system
Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic for...
Gespeichert in:
Veröffentlicht in: | Nature communications 2023-10, Vol.14 (1), p.6161-6161, Article 6161 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions.
Physical realizations of time crystals, non-equilibrium many-body systems with broken time-translation symmetry, typically require periodic driving. Here the authors demonstrate a time crystal without external periodic drive in a collection of erbium atoms under a continuous laser excitation. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-41905-3 |