minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information
This paper presents the R/Bioconductor package minet (version 1.1.6) which provides a set of functions to infer mutual information networks from a dataset. Once fed with a microarray dataset, the package returns a network where nodes denote genes, edges model statistical dependencies between genes a...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2008-10, Vol.9 (1), p.461-461, Article 461 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents the R/Bioconductor package minet (version 1.1.6) which provides a set of functions to infer mutual information networks from a dataset. Once fed with a microarray dataset, the package returns a network where nodes denote genes, edges model statistical dependencies between genes and the weight of an edge quantifies the statistical evidence of a specific (e.g transcriptional) gene-to-gene interaction. Four different entropy estimators are made available in the package minet (empirical, Miller-Madow, Schurmann-Grassberger and shrink) as well as four different inference methods, namely relevance networks, ARACNE, CLR and MRNET. Also, the package integrates accuracy assessment tools, like F-scores, PR-curves and ROC-curves in order to compare the inferred network with a reference one.
The package minet provides a series of tools for inferring transcriptional networks from microarray data. It is freely available from the Comprehensive R Archive Network (CRAN) as well as from the Bioconductor website. |
---|---|
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/1471-2105-9-461 |