Characterizing the Tumor Microenvironment and Its Correlation with cDC1-Related Gene Expression in Gastric Cancer

We analyzed RNA-seq data from the Cancer Genome Atlas (TCGA-STAD) and Gene Expression Omnibus (GEO) datasets, focusing on five cDC1-related genes. The cDC1-related signature was defined and divided into high and low expression groups. We employed gene set variation analysis (GSVA) for oncogenic sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of immunology research 2024, Vol.2024 (1), p.4468145
Hauptverfasser: Han, Song-Hee, Ju, Mi Ha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyzed RNA-seq data from the Cancer Genome Atlas (TCGA-STAD) and Gene Expression Omnibus (GEO) datasets, focusing on five cDC1-related genes. The cDC1-related signature was defined and divided into high and low expression groups. We employed gene set variation analysis (GSVA) for oncogenic signaling pathways and conducted comprehensive statistical analyses, including Kaplan-Meier and Cox proportional hazards models. The high cDC1-related gene signature group was associated with poorer overall and disease-free survival in the TCGA-STAD cohort. Significant differences in CD8+ T cell infiltration and cytotoxic capabilities were observed between high and low CDC1-related signature groups. The study also revealed a strong correlation between CDC1-related signature and increased expression of immune checkpoint proteins and oncogenic pathways, suggesting a complex immunosuppressive tumor microenvironment. Our findings indicate the potential of the cDC1-related signature as a prognostic marker in GC, offering insights into the tumor-immune interplay. The study underscores the importance of cDC1s in shaping the tumor microenvironment and their influence on patient prognosis in GC. These results may contribute to the development of novel therapeutic strategies targeting the immune microenvironment in GC.
ISSN:2314-8861
2314-7156
2314-7156
DOI:10.1155/2024/4468145