Iron-Based Electrocatalysts for Energy Conversion: Effect of Ball Milling on Oxygen Reduction Activity

In this work, we synthesized new materials based on Fe(II) phthalocyanine (FePc), urea and carbon black pearls (BP), called Fe-N-C, as electrocatalysts for the oxygen reduction reaction (ORR) in neutral solution. The electrocatalysts were prepared by combining ball-milling and pyrolysis treatments,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-08, Vol.10 (15), p.5278
Hauptverfasser: Costa de Oliveira, Maida Aysla, Machado Pico, Pedro Pablo, da Silva Freitas, Williane, D’Epifanio, Alessandra, Mecheri, Barbara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we synthesized new materials based on Fe(II) phthalocyanine (FePc), urea and carbon black pearls (BP), called Fe-N-C, as electrocatalysts for the oxygen reduction reaction (ORR) in neutral solution. The electrocatalysts were prepared by combining ball-milling and pyrolysis treatments, which affected the electrochemical surface area (ECSA) and electrocatalytic activity toward ORR, and stability was evaluated by cyclic voltammetry and chronoamperometry. Ball-milling allowed us to increase the ECSA, and the ORR activity as compared to the Fe-N-C sample obtained without any ball-milling. The effect of a subsequent pyrolysis treatment after ball-milling further improved the electrocatalytic stability of the materials. The set of results indicated that combining ball-milling time and pyrolysis treatments allowed us to obtain Fe-N-C catalysts with high catalytic activity toward ORR and stability which makes them suitable for microbial fuel cell applications.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10155278