Drivers and variability of CO2:O2 saturation along a gradient from boreal to Arctic lakes

Lakes are significant players for the global climate since they sequester terrestrially derived dissolved organic carbon (DOC), and emit greenhouse gases like CO 2 to the atmosphere. However, the differences in environmental drivers of CO 2 concentrations are not well constrained along latitudinal a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-11, Vol.12 (1), p.1-10, Article 18989
Hauptverfasser: Allesson, Lina, Valiente, Nicolas, Dörsch, Peter, Andersen, Tom, Eiler, Alexander, Hessen, Dag O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lakes are significant players for the global climate since they sequester terrestrially derived dissolved organic carbon (DOC), and emit greenhouse gases like CO 2 to the atmosphere. However, the differences in environmental drivers of CO 2 concentrations are not well constrained along latitudinal and thus climate gradients. Our aim here is to provide a better understanding of net heterotrophy and gas balance at the catchment scale in a set of boreal, sub-Arctic and high-Arctic lakes. We assessed water chemistry and concentrations of dissolved O 2 and CO 2 , as well as the CO 2 :O 2 ratio in three groups of lakes separated by steps of approximately 10 degrees latitude in South-Eastern Norway (near 60° N), sub-Arctic lakes in the northernmost part of the Norwegian mainland (near 70° N) and high-Arctic lakes on Svalbard (near 80° N). Across all regions, CO 2 saturation levels varied more (6–1374%) than O 2 saturation levels (85–148%) and hence CO 2 saturation governed the CO 2 :O 2 ratio. The boreal lakes were generally undersaturated with O 2 , while the sub-Arctic and high-Arctic lakes ranged from O 2 saturated to oversaturated. Regardless of location, the majority of the lakes were CO 2 supersaturated. In the boreal lakes the CO 2 :O 2 ratio was mainly related to DOC concentration, in contrast to the sub-Arctic and high-Arctic localities, where conductivity was the major statistical determinant. While the southern part is dominated by granitic and metamorphic bedrock, the sub-Arctic sites are scattered across a range of granitic to sedimentary bed rocks, and the majority of the high-Arctic lakes are situated on limestone, resulting in contrasting lake alkalinities between the regions. DOC dependency of the CO 2 :O 2 ratio in the boreal region together with low alkalinity suggests that in-lake heterotrophic respiration was a major source of lake CO 2 . Contrastingly, the conductivity dependency indicates that CO 2 saturation in the sub-Arctic and high-Arctic lakes was to a large part explained by DIC input from catchment respiration and carbonate weathering.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-23705-9