Hand gesture recognition via deep data optimization and 3D reconstruction

Hand gesture recognition (HGR) are the most significant tasks for communicating with the real-world environment. Recently, gesture recognition has been extensively utilized in diverse domains, including but not limited to virtual reality, augmented reality, health diagnosis, and robot interaction. O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ. Computer science 2023-10, Vol.9, p.e1619-e1619, Article e1619
Hauptverfasser: Mustafa, Zaid, Nsour, Heba, Tahir, Sheikh Badar Ud Din
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hand gesture recognition (HGR) are the most significant tasks for communicating with the real-world environment. Recently, gesture recognition has been extensively utilized in diverse domains, including but not limited to virtual reality, augmented reality, health diagnosis, and robot interaction. On the other hand, accurate techniques typically utilize various modalities generated from RGB input sequences, such as optical flow which acquires the motion data in the images and videos. However, this approach impacts real-time performance due to its demand of substantial computational resources. This study aims to introduce a robust and effective approach to hand gesture recognition. We utilize two publicly available benchmark datasets. Initially, we performed preprocessing steps, including denoising, foreground extraction, and hand detection via associated component techniques. Next, hand segmentation is done to detect landmarks. Further, we utilized three multi-fused features, including geometric features, 3D point modeling and reconstruction, and angular point features. Finally, grey wolf optimization served useful features of artificial neural networks for hand gesture recognition. The experimental results have shown that the proposed HGR achieved significant recognition of 89.92% and 89.76% over IPN hand and Jester datasets, respectively.
ISSN:2376-5992
2376-5992
DOI:10.7717/peerj-cs.1619