Isolation of arabinose and galactose from industrial sidestreams in high yield and purity

Monosaccharides such as L-arabinose (Ara) and D-tagatose (derived from D-galactose, Gal) are low-calorie sweeteners associated with improved glycaemic and insulin control compared to disaccharides such as sucrose. However, alternative sources and better sugar-sugar separation methods are needed to i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresources 2024-02, Vol.19 (1), p.858-871
Hauptverfasser: Widsten, Petri, West, Mark, Vaidya, Alankar, Murton, Karl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monosaccharides such as L-arabinose (Ara) and D-tagatose (derived from D-galactose, Gal) are low-calorie sweeteners associated with improved glycaemic and insulin control compared to disaccharides such as sucrose. However, alternative sources and better sugar-sugar separation methods are needed to improve the sustainability and economics of their production. Here, these sugars were obtained from purified and ultrafiltered compression screw pressate (CSP) of thermo-mechanical pulping of softwood (Pinus radiata) and orange peels (OPs). Ba-substituted zeolite X (BaX) molecular sieves showed superior separation performance of Ara from other sugars compared to conventional Ca-form ion exchange resin. To facilitate subsequent separation of sugars, OP hydrolysates were fermented to leave just Ara and Gal, while OP pectin was hydrolysed to generate a Gal-rich mixture. Overall, BaX has good potential for separating Ara from Ara-rich hydrolysates containing several different sugars. It is also suited for separating Ara and another monosaccharide such as Gal or Xyl in the absence of other sugars.
ISSN:1930-2126
1930-2126
DOI:10.15376/biores.19.1.858-871