A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries
Lithium–sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium–sulfu...
Gespeichert in:
Veröffentlicht in: | Nature communications 2016-10, Vol.7 (1), p.13065-13065, Article 13065 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lithium–sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium–sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.
The promise of lithium-sulfur batteries with higher energy densities than lithium-ion is hindered by the insulating nature of sulfur and dissolution of polysulfides. Here the authors design titanium monoxide/carbon hollow nanospheres that overcome both obstacles, enabling improved electrochemical properties. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms13065 |