Structural reversible adhesives based on thiol-epoxy vitrimers

This work presents a family of functional adhesives based on covalent adaptable networks (CANs). Low-cost and commercially available monomers, including diglycidyl ether of bisphenol A, pentaerythritol tetrakis (3-mercapto propionate) and dipentaerythritol hexakis (3-mercapto propionate), were cured...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer testing 2023-11, Vol.128, p.108205, Article 108205
Hauptverfasser: Roig, Adrià, Molina, Laura, Serra, Àngels, Santiago, David, De la Flor, Silvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a family of functional adhesives based on covalent adaptable networks (CANs). Low-cost and commercially available monomers, including diglycidyl ether of bisphenol A, pentaerythritol tetrakis (3-mercapto propionate) and dipentaerythritol hexakis (3-mercapto propionate), were cured using a base catalyst to produce highly cross-linked materials. The catalyst selection and the study of the curing reaction were performed using differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). The catalyst was chosen for better feasibility of industrial production, characterized by short curing times and relatively low temperatures. Thermal stability and thermomechanical properties of the final materials were evaluated through thermogravimetry (TGA) and dynamic mechanical thermal analysis (DMTA), respectively, revealing glass transition temperatures (Tg) higher than 50 °C. Stress relaxation tests were conducted to investigate the vitrimeric behaviour of the polymers, which exhibited an Arrhenius-type dependence of relaxation times on temperature. Importantly, both materials demonstrated impressive creep resistance up to 70 °C, indicating their suitability for use at elevated service temperatures. Tensile and lap-shear tests were also performed, revealing high lap-shear strength values (up to 16 MPa) comparable to those of commercial adhesives. Furthermore, these vitrimers displayed remarkable properties such as shape memory, shape reconfiguration, and self-welding capabilities, underscoring their excellent potential for a wide range of highly demanding applications in industrial production. •A new family of functional adhesives based on covalent adaptable networks (CANs) is developed.•The adhesives are based on low-cost and commercially available monomers and they are easy to obtain and manipulate.•Excellent mechanical, thermal, and adhesive properties.•Ease dismantling without damaging the adherents and able to be recycled or/and reused.
ISSN:0142-9418
1873-2348
DOI:10.1016/j.polymertesting.2023.108205