Adipose-derived exosomes ameliorate skeletal muscle atrophy via miR-146a-5p/IGF-1R signaling

The study of muscle disorders has gained popularity, with a particular emphasis on the relationship between adipose tissue and skeletal muscle. In our investigation, we discovered that the deletion of miR-146a-5p specifically in adipose tissue (aKO) led to a notable rise in mice's mass and adip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanobiotechnology 2024-12, Vol.22 (1), p.754-21, Article 754
Hauptverfasser: Qin, Mengran, Zhu, Jiahao, Xing, Lipeng, Fan, Yaotian, Luo, Junyi, Sun, Jiajie, Chen, Ting, Zhang, Yongliang, Xi, Qianyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The study of muscle disorders has gained popularity, with a particular emphasis on the relationship between adipose tissue and skeletal muscle. In our investigation, we discovered that the deletion of miR-146a-5p specifically in adipose tissue (aKO) led to a notable rise in mice's mass and adiposity. In contrast, it led to a decline in lean mass, ability to exercise, diameter of muscle fibers, and the levels of genes associated with differentiation. The co-culture experiment showed that the transfection of miR-146a-5p mimics to 3T3-L1 significantly suppressive cell growth and promotes myotube differentiation in C2C12 cells. Exosomes from white adipose tissue (WAT) of aKO mice (aKO-WAT-Exos) significantly promoted muscle atrophy and inhibited differentiation of C2C12 cells but were reversed by co-incubation with miR-146a-5p-mimics. The miR-146a-5p can specifically target IGF-1R to improve skeletal muscle wasting. In this process, the PI3K/AKT/mTOR pathway is activated or the FoxO3 pathway is inhibited to enhance the synthesis of skeletal muscle proteins. Significantly, miR-146a-5p serves a crucial function as a microRNA in the communication of the fat-muscle connection. It can be transported through the pathway of exosomes derived from adipose tissue, ultimately ameliorating skeletal muscle atrophy and modulating body mass index (BMI).
ISSN:1477-3155
1477-3155
DOI:10.1186/s12951-024-02983-7