Mass-balance and ablation processes of a perennial polar ice patch on the northern coast of Ellesmere Island

Ice patches have implications for landscape and ecosystem dynamics in polar deserts, however, the understanding of the driving factors that control their spatio-temporal variability is limited. This study aims to assess the seasonal and long-term evolution of ice patches on Ward Hunt Island (WHI; 83...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of glaciology 2023-12, Vol.69 (278), p.1598-1615
Hauptverfasser: Davesne, Gautier, Fortier, Daniel, Domine, Florent, Kinnard, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ice patches have implications for landscape and ecosystem dynamics in polar deserts, however, the understanding of the driving factors that control their spatio-temporal variability is limited. This study aims to assess the seasonal and long-term evolution of ice patches on Ward Hunt Island (WHI; 83°N, Canadian High Arctic) based on field measurements of surface mass and energy balance. Results show that mass gains of the ice patch systems occur mostly through drifting snow, making them highly linked to the topography as well as the frequency and magnitude of wind events. Summer ablation is primarily driven by net radiation, but the short-term variability in melt rate is driven by sensible heat fluxes. The highest ablation rates occur during the passage of warm fronts that combine strong winds and mild temperatures. Conversely, foggy days reduce fluxes of solar radiation and sensible heat to the snow/ice surface, thereby suppressing ablation. Ice patches are less climate-sensitive than other cryospheric elements due to a feedback between snow accumulation and topography, however, summer ablation is strongly influenced by micrometeorology. Model projections of these factors suggest that conditions will become critical for preserving ice patches at WHI and along the northern coast of Ellesmere Island as early as in the next decades.
ISSN:0022-1430
1727-5652
DOI:10.1017/jog.2023.44