Changes in Soil Microbial Community and Carbon Flux Regime across a Subtropical Montane Peatland-to-Forest Successional Series in Taiwan

Subtropical montane peatland is among several rare ecosystems that continue to receive insufficient scientific exploration. We analyzed the vegetation types and soil bacterial composition, as well as surface carbon dioxide and methane fluxes along a successional peatland-to-upland-forest series in o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2022-06, Vol.13 (6), p.958
Hauptverfasser: Chen, Chun-Yao, Lai, I-Ling, Chang, Shih-Chieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Subtropical montane peatland is among several rare ecosystems that continue to receive insufficient scientific exploration. We analyzed the vegetation types and soil bacterial composition, as well as surface carbon dioxide and methane fluxes along a successional peatland-to-upland-forest series in one such ecosystem in Taiwan. The Yuanyang Lake (YYL) study site is characterized by low temperature, high precipitation, prevailing fog, and acidic soil, which are typical conditions for the surrounding dominant Chamaecyparis obtusa var. formosana forest. Bacterial communities were dominated by Acidobacteriota and Proteobacteria. Along the bog-to-forest gradient, Proteobacteria decreased and Acidobacteriota increased while CO2 fluxes increased and CH4 fluxes decreased. Principal coordinate analysis allowed separating samples into four clusters, which correspond to samples from the bog, marsh, forest, and forest outside of the watershed. The majority of bacterial genera were found in all plots, suggesting that these communities can easily switch to other types. Variation among samples from the same vegetation type suggests influence of habitat heterogeneity on bacterial community composition. Variations of soil water content and season caused the variations of carbon fluxes. While CO2 flux decreased exponentially with increasing soil water content, the CH4 fluxes exhibited an exponential increase together with soil water content. Because YYL is in a process of gradual terrestrialization, especially under the warming climate, we expect changes in microbial composition and the greenhouse gas budget at the landscape scale within the next decades.
ISSN:1999-4907
1999-4907
DOI:10.3390/f13060958