Construction of Regular Non-Atomic Strictly-Positive Measures in Second-Countable Non-Atomic Locally Compact Hausdorff Spaces
This paper presents a constructive proof of the existence of a regular non-atomic strictly-positive measure on any second-countable non-atomic locally compact Hausdorff space. This construction involves a sequence of finitely-additive set functions defined recursively on an ascending sequence of rin...
Gespeichert in:
Veröffentlicht in: | Annales mathematicae Silesianae 2022-03, Vol.36 (1), p.15-25 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a constructive proof of the existence of a regular non-atomic strictly-positive measure on any second-countable non-atomic locally compact Hausdorff space. This construction involves a sequence of finitely-additive set functions defined recursively on an ascending sequence of rings of subsets with a set function limit that is extendable to a measure with the desired properties. Non-atomicity of the space provides a meticulous way to ensure that the set function limit is
-additive. |
---|---|
ISSN: | 2391-4238 0860-2107 2391-4238 |
DOI: | 10.2478/amsil-2022-0005 |