Construction of Regular Non-Atomic Strictly-Positive Measures in Second-Countable Non-Atomic Locally Compact Hausdorff Spaces

This paper presents a constructive proof of the existence of a regular non-atomic strictly-positive measure on any second-countable non-atomic locally compact Hausdorff space. This construction involves a sequence of finitely-additive set functions defined recursively on an ascending sequence of rin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales mathematicae Silesianae 2022-03, Vol.36 (1), p.15-25
1. Verfasser: Bentley, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a constructive proof of the existence of a regular non-atomic strictly-positive measure on any second-countable non-atomic locally compact Hausdorff space. This construction involves a sequence of finitely-additive set functions defined recursively on an ascending sequence of rings of subsets with a set function limit that is extendable to a measure with the desired properties. Non-atomicity of the space provides a meticulous way to ensure that the set function limit is -additive.
ISSN:2391-4238
0860-2107
2391-4238
DOI:10.2478/amsil-2022-0005