A Systematic Review of the Contribution of Additive Manufacturing toward Orthopedic Applications

Human bone holds an inherent capacity for repairing itself from trauma and damage, but concerning the severity of the defect, the choice of implant placement is a must. Additive manufacturing has become an elite option due to its various specifications such as patient-specific custom development of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2024-11, Vol.9 (44), p.44042-44075
Hauptverfasser: Joseph, Alphonsa, Uthirapathy, Vijayalakshmi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human bone holds an inherent capacity for repairing itself from trauma and damage, but concerning the severity of the defect, the choice of implant placement is a must. Additive manufacturing has become an elite option due to its various specifications such as patient-specific custom development of implants and its easy fabrication rather than the conventional methods used over the years. Additive manufacturing allows customization of the pore size, porosity, various mechanical properties, and complex structure design and formulation. Selective laser melting, powder bed fusion, electron beam melting, and fused deposition modeling are the various AM methods used extensively for implant fabrication. Metals, polymers, biocrystals, composites, and bio-HEA materials are used for implant fabrication for various applications. A wide variety of polymer implants are fabricated using additive manufacturing for nonload-bearing applications, and β-tricalcium phosphate, hydroxyapatite, bioactive glass, etc. are mainly used as ceramic materials in additive manufacturing due to the biological properties that could be imparted by the latter. For decades metals have played a major role in implant fabrication, and additive manufacturing of metals provides an easy approach to implant fabrication with augmented qualities. Various challenges and setbacks faced in the fabrication need postprocessing such as sintering, coating, surface polishing, etc. The emergence of bio-HEA materials, printing of shape memory implants, and five-dimensional printing are the trends of the era in additive manufacturing.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.4c04870