ICON (ICOsahedral Non-hydrostatic) Model Sensitivity over the Central Mediterranean
The sensitivity of the ICON model is gauged towards the establishment of ICON-LEPS in place of the currently operational COSMO-LEPS. A broad list of the model’s parameters were tested over a domain covering the wider area of Greece and Italy in the year 2020. ICON model runs were performed on a 6.5...
Gespeichert in:
Veröffentlicht in: | Environmental Sciences Proceedings 2023-09, Vol.26 (1), p.156 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The sensitivity of the ICON model is gauged towards the establishment of ICON-LEPS in place of the currently operational COSMO-LEPS. A broad list of the model’s parameters were tested over a domain covering the wider area of Greece and Italy in the year 2020. ICON model runs were performed on a 6.5 km horizontal grid and were enforced by the ECMWF operational forecast in 3 h intervals. The model’s sensitivities were applied to several surface meteorological fields via their areal averages in the last (132nd) lead time hour of the model runs, when they were expected to be at their climax. It was found that there was a considerable impact regarding the minimum and maximum values for many of the examined parameters in reference to their default values, providing a valuable insight into the understanding of the ICON model in reference to previous works regarding the COSMO model. In addition, due to the extensive forecast period, a seasonal dependence with respect to the considered meteorological fields was displayed. These features are expected to be of major importance in deciding the most important parameters for the application of perturbation techniques in the ensemble process and methodology. |
---|---|
ISSN: | 2673-4931 |
DOI: | 10.3390/environsciproc2023026156 |