Grid-Connected Inverter Based on a Resonance-Free Fractional-Order LCL Filter
The integer-order LCL (IOLCL) filter has excellent high-frequency harmonic attenuation capability but suffers from resonance, which causes system instability in grid-connected inverter applications. This paper studied a class of resonance-free fractional-order LCL (FOLCL) filters and control problem...
Gespeichert in:
Veröffentlicht in: | Fractal and fractional 2022-07, Vol.6 (7), p.374 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The integer-order LCL (IOLCL) filter has excellent high-frequency harmonic attenuation capability but suffers from resonance, which causes system instability in grid-connected inverter applications. This paper studied a class of resonance-free fractional-order LCL (FOLCL) filters and control problems of single-phase FOLCL-type grid-connected inverters (FOGCI). The Caputo fractional calculus operator was used to describe the fractional-order inductor and capacitor. Compared with the conventional IOLCL filter, by reasonably selecting the orders of the inductor and capacitor, the resonance peak of the FOLCL filter could be effectively avoided. In this way, the FOGCI could operate stably without passive or active dampers, which simplified the design of control system. Furthermore, compared with a single-phase integer-order grid-connected inverter (IOGCI) controlled by an integer-order PI (IOPI) controller, the FOGCI, combined with a fractional-order PI (FOPI) controller, could achieve greater gain and phase margins, which improved the system performance. The correctness of the theoretical analyses was validated through both simulation and hardware-in-the-loop experiments. |
---|---|
ISSN: | 2504-3110 2504-3110 |
DOI: | 10.3390/fractalfract6070374 |