Key environmental and production factors for understanding variation in switchgrass chemical attributes

Switchgrass (Panicum virgatum L.) is a promising feedstock for bioenergy and bioproducts; however, its inherent variability in chemical attributes creates challenges for uniform conversion efficiencies and product quality. It is necessary to understand the range of variation and factors (i.e., field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global Change Biology. Bioenergy 2022-07, Vol.14 (7), p.776-792
Hauptverfasser: Hoover, Amber N., Emerson, Rachel, Cortez, Marnie, Owens, Vance, Wolfrum, Ed, Payne, Courtney, Fike, John, Crawford, Jamie, Crawford, Ryan, Farris, Rodney, Hansen, Julie, Heaton, Emily A., Kumar, Sandeep, Mayton, Hilary, Wilson, Danielle M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Switchgrass (Panicum virgatum L.) is a promising feedstock for bioenergy and bioproducts; however, its inherent variability in chemical attributes creates challenges for uniform conversion efficiencies and product quality. It is necessary to understand the range of variation and factors (i.e., field management, environmental) influencing chemical attributes for process improvement and risk assessment. The objectives of this study were to (1) examine the impact of nitrogen fertilizer application rate, year, and location on switchgrass chemical attributes, (2) examine the relationships among chemical attributes, weather and soil data, and (3) develop models to predict chemical attributes using environmental factors. Switchgrass samples from a field study spanning four locations including upland cultivars, one location including a lowland cultivar, and between three and six harvest years were assessed for glucan, xylan, lignin, volatiles, carbon, nitrogen, and ash concentrations. Using variance estimation, location/cultivar, nitrogen application rate, and year explained 65%–96% of the variation for switchgrass chemical attributes. Location/cultivar × year interaction was a significant factor for all chemical attributes indicating environmental‐based influences. Nitrogen rate was less influential. Production variables and environmental conditions occurring during the switchgrass field trials were used to successfully predict chemical attributes using linear regression models. Upland switchgrass results highlight the complexity in plant responses to growing conditions because all production and environmental variables had strong relationships with one or more chemical attributes. Lowland switchgrass was limited to observations of year‐to‐year environmental variability and nitrogen application rate. All explanatory variable categories were important for lowland switchgrass models but stand age and precipitation relationships were particularly strong. The relationships found in this study can be used to understand spatial and temporal variation in switchgrass chemical attributes. The ability to predict chemical attributes critical for conversion processes in a geospatial/temporal manner would provide state‐of‐the‐art knowledge for risk assessment in the bioenergy and bioproducts industry. Switchgrass is a promising feedstock for bioenergy and bioproducts. Chemical attributes were assessed for switchgrass from a field study spanning five locations and up to six ha
ISSN:1757-1693
1757-1707
DOI:10.1111/gcbb.12942