Ex vivo model of epilepsy in organotypic slices : a new tool for drug screening

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroinflammation 2018-07, Vol.15 (1), p.203-18, Article 203
Hauptverfasser: Magalhães, Daniela, Pereira, Noémia, Rombo, Diogo, Beltrão-Cavacas, Cláudia, Sebastião, Ana M, Valente, Cláudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated Background: Epilepsy is a prevalent neurological disorder worldwide. It is characterized by an enduring predisposition to generate seizures and its development is accompanied by alterations in many cellular processes. Organotypic slice cultures represent a multicellular environment with the potential to assess biological mechanisms, and they are used as a starting point for refining molecules for in vivo studies. Here, we investigated organotypic slice cultures as a model of epilepsy. Methods: We assessed, by electrophysiological recordings, the spontaneous activity of organotypic slices maintained under different culture protocols. Moreover, we evaluated, through molecular-based approaches, neurogenesis, neuronal death, gliosis, expression of proinflammatory cytokines, and activation of NLRP3 inflammasome (nucleotide-binding, leucine-rich repeat, pyrin domain) as biomarkers of neuroinflammation. Results: We demonstrated that organotypic slices, maintained under a serum deprivation culture protocol, develop epileptic-like activity. Furthermore, throughout a comparative study with slices that do not depict any epileptiform activity, slices with epileptiform activity were found to display significant differences in terms of inflammation-related features, such as (1) increased neuronal death, with higher incidence in CA1 pyramidal neurons of the hippocampus; (2) activation of astrocytes and microglia, assessed through western blot and immunohistochemistry; (3) upregulation of proinflammatory cytokines, specifically interleukin-1β (IL-1β), interleukin-6, and tumor necrosis factor α, revealed by qPCR; and (4) enhanced expression of NLRP3, assessed by western blot, together with increased NLRP3 activation, showed by IL-1β quantification. Conclusions: Thus, organotypic slice cultures gradually deprived of serum mimic the epileptic-like activity, as well as the inflam
ISSN:1742-2094
1742-2094
DOI:10.1186/s12974-018-1225-2