Tropospheric ozone column dataset from OMPS-LP/OMPS-NM limb–nadir matching

A tropospheric ozone column (TrOC) dataset from the Ozone Mapping and Profiler Suite (OMPS) observations was generated by combining the retrieved total ozone column from OMPS – Nadir Mapper (OMPS-NM) and limb profiles from OMPS – Limb Profiler (OMPS-LP) data. All datasets were generated at the Unive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric measurement techniques 2024-03, Vol.17 (6), p.1791-1809
Hauptverfasser: Orfanoz-Cheuquelaf, Andrea, Arosio, Carlo, Rozanov, Alexei, Weber, Mark, Ladstätter-Weißenmayer, Annette, Burrows, John P, Thompson, Anne M, Stauffer, Ryan M, Kollonige, Debra E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A tropospheric ozone column (TrOC) dataset from the Ozone Mapping and Profiler Suite (OMPS) observations was generated by combining the retrieved total ozone column from OMPS – Nadir Mapper (OMPS-NM) and limb profiles from OMPS – Limb Profiler (OMPS-LP) data. All datasets were generated at the University of Bremen, and the TrOC product was obtained by applying the limb–nadir matching technique (LNM). The retrieval algorithm and a comprehensive analysis of the uncertainty budget are presented here. The OMPS-LNM-TrOC dataset (2012–2018) is analysed and validated through comparison with ozonesondes, tropospheric ozone residual (TOR) data from the combined Ozone Monitoring Instrument/Microwave Limb Sounder (OMI/MLS) observations, and the TROPOspheric Monitoring Instrument (TROPOMI) Convective Cloud Differential technique (CCD) dataset. The OMPS-LNM TrOC is generally lower than the other datasets. The average bias with respect to ozonesondes is −1.7 DU with no significant latitudinal dependence identified. The mean difference with respect to OMI/MLS TOR and TROPOMI CCD is −3.4 and −1.8 DU, respectively. The seasonality and inter-annual variability are in good agreement with all comparison datasets.
ISSN:1867-8548
1867-1381
1867-8548
DOI:10.5194/amt-17-1791-2024