Nutritional Evaluation of Brachiaria brizantha cv. marandu using Convolutional Neural Networks
A identificação do estresse nutricional das plantas com base nos sintomas visuais é predominantemente manual e é realizada por especialistas treinados para identificar tais anomalias. Além disso, esse processo tende a consumir muito tempo, tem uma variabilidade entre as áreas de cultivo e é frequent...
Gespeichert in:
Veröffentlicht in: | Inteligencia artificial 2021-01, Vol.23 (66) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A identificação do estresse nutricional das plantas com base nos sintomas visuais é predominantemente manual e é realizada por especialistas treinados para identificar tais anomalias. Além disso, esse processo tende a consumir muito tempo, tem uma variabilidade entre as áreas de cultivo e é frequentemente necessário para análise em vários pontos da propriedade. Este trabalho propõe um sistema de reconhecimento de imagens que analisa o estado nutricional da planta para ajudar a resolver esses problemas. A metodologia utiliza aprendizado profundo que automatiza o processo de identificação e classificação do estresse nutricional de Brachiaria brizantha cv. marandu. Um sistema de reconhecimento de imagem foi construído e analisa o estado nutricional da planta usando as imagens digitais de suas folhas. O sistema identifica e classifica as deficiências de nitrogênio e potássio. Ao receber a imagem da folha do pasto, após uma classificação realizada por uma rede neural convolucional (CNN), o sistema apresenta o resultado do estado nutricional diagnosticado. Os testes realizados para identificar o estado nutricional das folhas apresentaram uma precisão de 96%. Estamos trabalhando para expandir os dados do banco de dados de imagens para obter um aumento nos níveis de precisão, visando o treinamento com maior quantidade de informações apresentadas à CNN e, assim, obtendo resultados mais expressivos. |
---|---|
ISSN: | 1137-3601 1988-3064 |
DOI: | 10.4114/intartif.vol23iss66pp85-96 |