EXPLORING TRANSIENT, NEUTRONIC, REDUCED-ORDER MODELS USING DMD/POD-GALERKIN AND DATA-DRIVEN DMD

There is growing interest in the development of transient, multiphysics models for nuclear reactors and analysis of uncertainties in those models. Reduced-order models (ROMs) provide a computationally cheaper alternative to compute uncertainties. However, the application of ROMs to transient systems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web of conferences 2021-01, Vol.247, p.15019
Hauptverfasser: Elzohery, Rabab, Roberts, Jeremy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is growing interest in the development of transient, multiphysics models for nuclear reactors and analysis of uncertainties in those models. Reduced-order models (ROMs) provide a computationally cheaper alternative to compute uncertainties. However, the application of ROMs to transient systems remains a challenging task. Here, a 1-D, twogroup, time-dependent, diffusion model was used to explore the potential of three different ROMs: the intrusive POD-Galerkin and DMD-Galerkin methods and the purely datadriven DMD. For the problem studied, POD-Galerkin exhibited by far the best accuracy and was selected for further application to uncertainty propagation. Perturbations were introduced to the initial condition and to the cross-section data. A greedy-POD sampling procedure was used to construct a reduced space that captured much of the variation in the uncertain these parameters. Results indicate that relatively few samples of the uncertain parameters are needed to produce a basis for POD-Galerkin that leads to distributions of the quantities of interest that match well with those obtained from the full-order model using brute-force, forward sampling.
ISSN:2100-014X
2100-014X
DOI:10.1051/epjconf/202124715019