Lattice walk area combinatorics, some remarkable trigonometric sums and Apéry-like numbers

Explicit algebraic area enumeration formulae are derived for various lattice walks generalizing the canonical square lattice walks, and in particular for the triangular lattice chiral walks recently introduced by the authors. A key element in the enumeration is the derivation of some identities invo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear physics. B 2020-11, Vol.960, p.115174, Article 115174
Hauptverfasser: Ouvry, Stéphane, Polychronakos, Alexios P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Explicit algebraic area enumeration formulae are derived for various lattice walks generalizing the canonical square lattice walks, and in particular for the triangular lattice chiral walks recently introduced by the authors. A key element in the enumeration is the derivation of some identities involving some remarkable trigonometric sums –which are also important building blocks of non trivial quantum models such as the Hofstadter model– and their explicit rewriting in terms of multiple binomial sums. An intriguing connection is also made with number theory and some classes of Apéry-like numbers, the cousins of the Apéry numbers which play a central role in irrationality considerations for ζ(2) and ζ(3).
ISSN:0550-3213
1873-1562
DOI:10.1016/j.nuclphysb.2020.115174