Influence of Welding Speed on the Microstructure and Mechanical Properties of Electron Beam-Welded Joints of TC4 and 4J29 Sheets using Cu/Nb Multi-Interlayers

Dissimilar metal joining between titanium and kovar alloys was conducted using electron beam welding. Metallurgical bonding of titanium alloys and kovar alloys was achieved by using a Cu/Nb multi-interlayer. The effects of welding speed on weld appearance, microstructure and mechanical properties of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2018-10, Vol.8 (10), p.810
Hauptverfasser: Mo, Defeng, Wang, Yang, Fang, Yongjian, Song, Tingfeng, Jiang, Xiaosong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dissimilar metal joining between titanium and kovar alloys was conducted using electron beam welding. Metallurgical bonding of titanium alloys and kovar alloys was achieved by using a Cu/Nb multi-interlayer. The effects of welding speed on weld appearance, microstructure and mechanical properties of welded joints were investigated. The microstructure of welded joints was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). The mechanical properties of welded joints were investigated by tensile strength and micro-hardness tests. The results showed that welding speed had great effects on the weld appearance, microstructure, and mechanical properties of electron beam-welded joints. With an increase of welding speed, at the titanium alloy side, the amount of (Nb,Ti) solid solution was increased, while the formation of brittle FeTi was effectively suppressed. At the kovar alloy side, microstructure was mainly composed of soft Cu solid solution and some α-Fe + γ phases. In addition, higher welding speeds within a certain range was beneficial for eliminating the formation of cracks, and inhibiting the embrittlement of welded joints. Therefore, the tensile strength of welded joints was increased to about 120 MPa for a welding speed of 10 mm/s. Furthermore, the bonding mechanism of TC4/Nb/Cu/4J29 dissimilar welded joints had been investigated and detailed.
ISSN:2075-4701
2075-4701
DOI:10.3390/met8100810