Divergence and unique solution of equations
We study proof techniques for bisimilarity based on unique solution of equations. We draw inspiration from a result by Roscoe in the denotational setting of CSP and for failure semantics, essentially stating that an equation (or a system of equations) whose infinite unfolding never produces a diverg...
Gespeichert in:
Veröffentlicht in: | Logical methods in computer science 2019-01, Vol.15, Issue 3 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study proof techniques for bisimilarity based on unique solution of equations. We draw inspiration from a result by Roscoe in the denotational setting of CSP and for failure semantics, essentially stating that an equation (or a system of equations) whose infinite unfolding never produces a divergence has the unique-solution property. We transport this result onto the operational setting of CCS and for bisimilarity. We then exploit the operational approach to: refine the theorem, distinguishing between different forms of divergence; derive an abstract formulation of the theorems, on generic LTSs; adapt the theorems to other equivalences such as trace equivalence, and to preorders such as trace inclusion. We compare the resulting techniques to enhancements of the bisimulation proof method (the `up-to techniques'). Finally, we study the theorems in name-passing calculi such as the asynchronous $\pi$-calculus, and use them to revisit the completeness part of the proof of full abstraction of Milner's encoding of the $\lambda$-calculus into the $\pi$-calculus for L\'evy-Longo Trees. |
---|---|
ISSN: | 1860-5974 |
DOI: | 10.23638/LMCS-15(3:12)2019 |