3D model based adaptive cutting system for the meat factory cell: Overcoming natural variability
This article presents a comprehensive framework for executing primal cuts on pigs within a Meat Factory Cell (MFC) context, with potential applications for small and medium-sized producers. The framework begins by creating a 3D model from CT-scans, which is then aligned with a 3D point cloud acquire...
Gespeichert in:
Veröffentlicht in: | Smart agricultural technology 2024-03, Vol.7, p.100388, Article 100388 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a comprehensive framework for executing primal cuts on pigs within a Meat Factory Cell (MFC) context, with potential applications for small and medium-sized producers. The framework begins by creating a 3D model from CT-scans, which is then aligned with a 3D point cloud acquired from an Intel© Realsense™ camera using an initial coarse estimate, and refined through Bayesian Coherent Point Drift. Cutting trajectories are generated based on a custom 3D model of the cutting surface, designed with consideration of the pig's skeletal structure and the cutting properties of the knife tool attached to the robot. A qualitative evaluation of the cuts performed by a professional butcher reveals promising results, while also identifying areas for improvement. The article underscores the potential of integrating CT-scans, 3D point clouds, and cutting models to automate primal cuts in the meat industry, addressing the inherent anatomical variability among animals. |
---|---|
ISSN: | 2772-3755 2772-3755 |
DOI: | 10.1016/j.atech.2023.100388 |