Integrating GEOBIA, Machine Learning, and Volunteered Geographic Information to Map Vegetation over Rooftops

The objective of this study is to evaluate operational methods for creating a particular type of urban vegetation map—one focused on vegetation over rooftops (VOR), specifically trees that extend over urban residential buildings. A key constraint was the use of passive remote sensing data only. To a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS international journal of geo-information 2018-11, Vol.7 (12), p.462
Hauptverfasser: Griffith, David, Hay, Geoffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this study is to evaluate operational methods for creating a particular type of urban vegetation map—one focused on vegetation over rooftops (VOR), specifically trees that extend over urban residential buildings. A key constraint was the use of passive remote sensing data only. To achieve this, we (1) conduct a review of the urban remote sensing vegetation classification literature, and we then (2) discuss methods to derive a detailed map of VOR for a study area in Calgary, Alberta, Canada from a late season, high-resolution airborne orthomosaic based on an integration of Geographic Object-Based Image Analysis (GEOBIA), pre-classification filtering of image-objects using Volunteered Geographic Information (VGI), and a machine learning classifier. Pre-classification filtering lowered the computational burden of classification by reducing the number of input objects by 14%. Accuracy assessment results show that, despite the presence of senescing vegetation with low vegetation index values and deep shadows, classification using a small number of image-object spectral attributes as classification features (n = 9) had similar overall accuracy (88.5%) to a much more complex classification (91.8%) comprising a comprehensive set of spectral, texture, and spatial attributes as classification features (n = 86). This research provides an example of the very specific questions answerable about precise urban locations using a combination of high-resolution passive imagery and freely available VGI data. It highlights the benefits of pre-classification filtering and the judicious selection of features from image-object attributes to reduce processing load without sacrificing classification accuracy.
ISSN:2220-9964
2220-9964
DOI:10.3390/ijgi7120462