Extraction of high quality and high yield RNA from frozen EDTA blood

Peripheral blood RNA profiling, which can reveal systemic changes in gene expression and immune responses to disease onset and progression, is a powerful tool for diagnosis and biomarker discovery. This technique usually requires high quality RNA, which is only obtainable from fresh blood, or frozen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-04, Vol.14 (1), p.8628-8628, Article 8628
Hauptverfasser: Nguyen, Long T., Pollock, Carol A., Saad, Sonia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Peripheral blood RNA profiling, which can reveal systemic changes in gene expression and immune responses to disease onset and progression, is a powerful tool for diagnosis and biomarker discovery. This technique usually requires high quality RNA, which is only obtainable from fresh blood, or frozen blood that has been collected in special RNA-stabilisation systems. The current study aimed to develop a novel protocol to extract high quality RNA from frozen blood that had been collected in the conventional EDTA tubes. We determined that thawing EDTA blood in the presence of cell lysis/RNA stabilisation buffers (Paxgene or Nucleospin) significantly improved RNA quality (RIN) from below 5 to above 7, which to date has not been shown possible. The EDTA-Nucleospin protocol resulted in 5 times higher yield than the EDTA-Paxgene-PreAnalytix method. The average RIN and mRNA expression levels of five different genes including 18 s, ACTB, MCP1, TNFa and TXNIP using this protocol were also indifferent to those from Paxgene blood, suggesting similar RNA quality and blood transcriptome. Moreover, the protocol allows DNA to be extracted simultaneously. In conclusion, we have developed a practical and efficient protocol to extract high quality, high yield RNA from frozen EDTA blood.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-58576-9