Technical Issues of Vim-PSA Double-Target DBS for Essential Tremor
Deep brain stimulation (DBS) is an effective surgical treatment for essential tremor (ET), with the ventral intermediate nucleus (Vim) and posterior subthalamic area (PSA) as the most common targets. The stimulation efficacy of ET with Vim-PSA double-target DBS has been reported. Herein, we aim to p...
Gespeichert in:
Veröffentlicht in: | Brain sciences 2023-03, Vol.13 (4), p.566 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep brain stimulation (DBS) is an effective surgical treatment for essential tremor (ET), with the ventral intermediate nucleus (Vim) and posterior subthalamic area (PSA) as the most common targets. The stimulation efficacy of ET with Vim-PSA double-target DBS has been reported. Herein, we aim to propose surgical techniques for Vim-PSA double-target DBS surgery.
This study enrolled six patients with ET who underwent Vim-PSA double-target electrode implantation from October 2019 to May 2022. The targets were located and adjusted using coordinates and multimodality MRI images. A burr hole was accurately drilled in line with the electrode trajectory under the guidance of a stereotactic frame. Novel approaches were adopted during the electrode implantation process for pneumocephalus reduction, including "arachnoid piamater welding" and "water sealing". Electrophysiological recording was used to identify the implantation sites of the electrodes. A 3D reconstruction model of electrodes and nuclei was established to facilitate programming.
The combination of coordinates and multimodality MRI images for target location and adjustment enabled the alignment of Vim and PSA. Postoperative CT scanning showed that the electrode was precisely implanted. Stereotactic guidance facilitated accurate burr hole drilling. "Arachnoid piamater welding" and "water sealing" were efficient in reducing pneumocephalus. Intraoperative electrophysiological verified the efficacy of Vim-PSA double-target DBS surgery.
The methods for target location and adjustment, accurate drilling of the burr hole, reduction in pneumocephalus, and intraoperative electrophysiological verification are key issues in DBS surgery targeting both the Vim and PSA. This study may provide technical support for Vim-PSA DBS, especially for surgeons with less experience in functional neurosurgery. |
---|---|
ISSN: | 2076-3425 2076-3425 |
DOI: | 10.3390/brainsci13040566 |