Analysis and Error Separation of Capacitive Potential in the Inductosyn
High-precision rotor position information is usually needed in permanent-magnet synchronous motors, which are critical to high-performance motor control based on vector algorithm. Therefore, inductosyn is the best choice for the permanent-magnet synchronous motor position sensor. Capacitive potentia...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2022-10, Vol.15 (19), p.6910 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-precision rotor position information is usually needed in permanent-magnet synchronous motors, which are critical to high-performance motor control based on vector algorithm. Therefore, inductosyn is the best choice for the permanent-magnet synchronous motor position sensor. Capacitive potential is an important component of the ineffective potential in the inductosyn angle measuring system. When the effective potential of the inductosyn approaches zero, the proportion of capacitive potential in the output potential will be greatly amplified. As a result, the zero-position accuracy will be seriously affected. Error potential and effective potential always exist at the same time, so it is difficult to measure and study quantitatively. In this paper, the capacitance network model of inductosyn was established and the analytical calculation method was proposed. The factors affecting the capacitive potential and the suppression strategy were studied through the combination of theoretical analysis and the finite element method. In addition, the error separation method of capacitive potential was also proposed in this paper, which realized the accurate measurement of this part of error. The accuracy of the theoretical calculation and finite element analysis was verified by the experimental results. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15196910 |