A Game Model and Fault Recovery Algorithm for SDN Multi-Domain
Software-defined networking (SDN) offers an effective solution for flexible management of Wireless Sensor Networks (WSNs) by separating control logic from sensor nodes. This paper tackles the challenge of timely recovery from SDN controller failures and proposes a game theoretic model for multi-doma...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.25 (1), p.164 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Software-defined networking (SDN) offers an effective solution for flexible management of Wireless Sensor Networks (WSNs) by separating control logic from sensor nodes. This paper tackles the challenge of timely recovery from SDN controller failures and proposes a game theoretic model for multi-domain controllers. A game-enhanced autonomous fault recovery algorithm for SDN controllers is proposed, which boasts fast fault recovery and low migration costs. Taking into account the remaining capacity of controllers and the transition relationships between devices, the target controller is first selected to establish a controller game domain. The issue of mapping the out-of-control switches within the controller game domain to the target controller is transformed into a linear programming problem for solution. A multi-population particle swarm optimization algorithm with repulsive interaction is employed to iteratively evolve the optimal mapping between controllers and switches. Finally, migration tasks are executed based on the optimal mapping results, and the role transition of the target controller is completed. Comparative experimental results demonstrate that, compared to existing SDN controller fault recovery algorithms, the proposed algorithm can balance the migration cost of switches and the load pressure on controllers while reducing propagation delay in SDN controllers, significantly decreasing the fault recovery time. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s25010164 |