A Method for Extracting Contours of Building Facade Hollowing Defects Using Polarization Thermal Images Based on Improved Canny Algorithm

During the service process of high-rise buildings, hollowing defects may be produced in the decorative layer, which not only affect the appearance, but also create a safety hazard of wall covering and shattered plaster peeling. Numerous studies have shown that hollowing can be detected using infrare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Buildings (Basel) 2023-10, Vol.13 (10), p.2563
Hauptverfasser: Zhu, Darong, Li, Jianguo, Wang, Fangbin, Gong, Xue, Cong, Wanlin, Wang, Ping, Liu, Yanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During the service process of high-rise buildings, hollowing defects may be produced in the decorative layer, which not only affect the appearance, but also create a safety hazard of wall covering and shattered plaster peeling. Numerous studies have shown that hollowing can be detected using infrared thermal imagery under normal conditions. However, it is difficult to detect the edge and calculate the area of the hollowing on an exterior facade accurately because of the low contrast and fuzzy boundaries of the obtained infrared thermal images. To address these problems, a method for extracting the contours of building facade hollowing defects using polarization thermal images based on an improved Canny algorithm has been proposed in this paper. Firstly, the principle of thermal polarization imaging was introduced for hollowing detection. Secondly, considering the shortcomings of the Canny edge detection algorithm and the features of polarization thermal images, an improved Canny edge detection algorithm is proposed, including adaptive bilateral filtering to improve noise reduction ability while ensuring defect edges are not virtualized, Laplacian sharpening and histogram equalization to achieve contour sharpening and contrast enhancement, and eight-direction gradient templates for calculating image gradients, which make interpolation with non-maximum suppression more accurate, and the Tsallis entropy threshold segmentation algorithm based on the OTSU algorithm verification makes the image contour information more complete and accurate. Finally, a long-wave infrared polarization thermal imaging experimental platform was established and validation experiments were conducted. The experimental results demonstrate that the distinct, smooth, and precise location edges of the hollowing polarization infrared thermal images can be obtained, and the average error of the detected hollowing area is about 10% using the algorithm proposed in this paper.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings13102563