Experimental study on seismic performance of composite reinforced structure with shock absorption and energy dissipation of potentially collapsedrock mass
At present, there are two types of structures for strengthening dangerous rock mass in earthquake area construction: anchorage and retaining. The connection between the two types of reinforced structures and the dangerous rock mass is rigid with very limited deformation ability between the structure...
Gespeichert in:
Veröffentlicht in: | Shuiwen Dizhi Gongcheng Dizhi 2024-09, Vol.51 (5), p.124-135 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | At present, there are two types of structures for strengthening dangerous rock mass in earthquake area construction: anchorage and retaining. The connection between the two types of reinforced structures and the dangerous rock mass is rigid with very limited deformation ability between the structure and unstable rock mass, which leads to the poor seismic performance of the structure. Under the seismic load especially when the magnitude of earthquake is strong, it is easy to fail and cause collapse disaster. This kind of damage phenomenon exists in a large number of seismic projects in southwest China. To solve the existing problems of the reinforced structure, a composite reinforced structure was designed in this study, and it allows the dangerous rock mass to be dislocated to a limited extent under the action of earthquakes, can buffer the seismic impact force of the dangerous rock mass, and has the function of shock absorption and energy dissipation. The structure is composed of anchor rod (cable), shock ab |
---|---|
ISSN: | 1000-3665 |
DOI: | 10.16030/j.cnki.issn.1000-3665.202306009 |