Improving the Ionic Conductivity of the LLZO–LZO Thin Film through Indium Doping
A solid-state electrolyte with an ionic conductivity comparable to that of a liquid electrolyte is demanded of all-solid-state lithium-ion batteries. Li7La3Zr2O12 (LLZO) is considered to be a promising candidate due to its good thermal stability, high ionic conductivity, and wide electrochemical win...
Gespeichert in:
Veröffentlicht in: | Crystals (Basel) 2021-04, Vol.11 (4), p.426 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A solid-state electrolyte with an ionic conductivity comparable to that of a liquid electrolyte is demanded of all-solid-state lithium-ion batteries. Li7La3Zr2O12 (LLZO) is considered to be a promising candidate due to its good thermal stability, high ionic conductivity, and wide electrochemical window. However, the synthesis of a stable cubic-phase LLZO thin film with enhanced densification at a relatively low thermal treatment temperature is yet to be developed. Indium is predicted to be a possible dopant to stabilize the cubic-phase LLZO (c-LLZO). Herein, via a nanolayer stacking process, a LLZO–Li2CO3–In2O3 multilayer solid electrolyte precursor was obtained. After thermal annealing at different temperatures, the effects of indium doping on the formation of c-LLZO and the ionic conductivities of the prepared LLZO–LZO thin film were systematically investigated. The highest ionic conductivity of 9.6 × 10−6 S·cm–1 was obtained at an annealing temperature of 800 °C because the incorporation of indium promoted the formation of c-LLZO and the highly conductive LLZO–LZO interfaces. At the end, a model of LLZO–LZO interface-enhancing ionic conductivity was proposed. This work provides a new approach for the development of low-temperature LLZO-based, solid-state thin-film batteries. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst11040426 |