A reconciled solution of Meltwater Pulse 1A sources using sea-level fingerprinting

The most rapid global sea-level rise event of the last deglaciation, Meltwater Pulse 1A (MWP-1A), occurred ∼14,650 years ago. Considerable uncertainty regarding the sources of meltwater limits understanding of the relationship between MWP-1A and the concurrent fast-changing climate. Here we present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-04, Vol.12 (1), p.2015-11, Article 2015
Hauptverfasser: Lin, Yucheng, Hibbert, Fiona D., Whitehouse, Pippa L., Woodroffe, Sarah A., Purcell, Anthony, Shennan, Ian, Bradley, Sarah L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The most rapid global sea-level rise event of the last deglaciation, Meltwater Pulse 1A (MWP-1A), occurred ∼14,650 years ago. Considerable uncertainty regarding the sources of meltwater limits understanding of the relationship between MWP-1A and the concurrent fast-changing climate. Here we present a data-driven inversion approach, using a glacio-isostatic adjustment model to invert for the sources of MWP-1A via sea-level constraints from six geographically distributed sites. The results suggest contributions from Antarctica, 1.3 m (0–5.9 m; 95% probability), Scandinavia, 4.6 m (3.2–6.4 m) and North America, 12.0 m (5.6–15.4 m), giving a global mean sea-level rise of 17.9 m (15.7–20.2 m) in 500 years. Only a North American dominant scenario successfully predicts the observed sea-level change across our six sites and an Antarctic dominant scenario is firmly refuted by Scottish isolation basin records. Our sea-level based results therefore reconcile with field-based ice-sheet reconstructions. Meltwater Pulse 1A was the most rapid global sea-level rise event during the last deglaciation, but the source of the freshwater causing this rise is debated. Here, the authors use a data-driven inversion approach to show that the North American and Eurasian Ice Sheets were the dominant contributors.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-21990-y