Time division measurement circuits for multidimensional measurement objects

Background. The need to increase the amount of information about the state of the technological process has led to the need to consider parametric transducers of sensors as multidimensional measurement objects, and therefore, to create measurement circuits for sensors with a multi-element replacemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Известия высших учебных заведений. Поволжский регион:Технические науки 2021-03 (1)
1. Verfasser: Arbuzov, V.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. The need to increase the amount of information about the state of the technological process has led to the need to consider parametric transducers of sensors as multidimensional measurement objects, and therefore, to create measurement circuits for sensors with a multi-element replacement scheme for their parametric transducers. The purpose of the research is to consider the principle of operation of the main components of measuring circuits with phase separation of channels for multidimensional sensors and to choose a method for creating a digital model of the voltage into which the immitance of the sensor is converted. Materials and methods. The use of the method of phase separation of channels in the measuring circuits of sensors allows not only to correct the error caused by the imperfection of the element base and cable capacity, but also to measure the parameters of multidimensional objects. The use of the Prony method to build a digital model of the output voltage of an active converter reduces the conversion time to the test signal period by reducing the number of samples. Results and conclusions. To obtain a discrete model of the output voltage of the active converter, it is proposed to use the Prony method. This method allows obtaining a discrete model of an analog signal with a limited number of samples. The degree of adequacy of the obtained model is determined by the digit capacity of the analog-to-digital conversion, the number of samples and their duration, the step and uniformity of sampling, by the interpolation or extrapolation method used to obtain the digital model.
ISSN:2072-3059
DOI:10.21685/2072-3059-2021-1-6