Adaptive visual target tracking algorithm based on classified-patch kernel particle filter

We propose a high-performance visual target tracking (VTT) algorithm based on classified-patch kernel particle filter (CKPF). Novel features of this VTT algorithm include sparse representations of the target template using the label-consistent K-singular value decomposition (LC-KSVD) algorithm; Gaus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on image and video processing 2019-01, Vol.2019 (1), p.1-12, Article 20
Hauptverfasser: Zhang, Guangnan, Yang, Jinlong, Wang, Weixing, Hu, Yu Hen, Liu, Jianjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a high-performance visual target tracking (VTT) algorithm based on classified-patch kernel particle filter (CKPF). Novel features of this VTT algorithm include sparse representations of the target template using the label-consistent K-singular value decomposition (LC-KSVD) algorithm; Gaussian kernel density particle filter to facilitate candidate template generation and likelihood matching score evaluation; and an occlusion detection method using sparse coefficient histogram (ASCH). Experimental results validate superior performance of the proposed tracking algorithm over state-of-the-art visual target tracking algorithms in scenarios that include occlusion, background clutter, illumination change, target rotation, and scale changes.
ISSN:1687-5281
1687-5176
1687-5281
DOI:10.1186/s13640-019-0411-1