3MSF: A Multi-Modal Adaptation of the 6TiSCH Minimal Scheduling Function for the Industrial IoT
Although wireless devices continuously gain communication capabilities, even state-of-the-art Industrial Internet of Things (IIoT) architectures, such as Internet Protocol version 6 over the Time-Slotted Channel Hopping (TSCH) mode of IEEE 802.15.4 (6TiSCH), continue to use network-wide, fixed link...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2024-04, Vol.24 (8), p.2414 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although wireless devices continuously gain communication capabilities, even state-of-the-art Industrial Internet of Things (IIoT) architectures, such as Internet Protocol version 6 over the Time-Slotted Channel Hopping (TSCH) mode of IEEE 802.15.4 (6TiSCH), continue to use network-wide, fixed link configurations. This presents a missed opportunity to (1) forego the need for rigorous manual setup of new deployments; and (2) provide full coverage of particularly heterogeneous and/or dynamic industrial sites. As such, we devised the Multi-Modal Minimal Scheduling Function (3MSF) for the TSCH link layer, which, combined with previous work on the routing layer, results in a 6TiSCH architecture able to dynamically exploit modern multi-modal hardware on a per-link basis through variable-duration timeslots, simultaneous transmission, and routing metric normalization. This paper describes, in great detail, its design and discusses the rationale behind every choice made. Finally, we evaluate three basic scenarios through simulations, showcasing both the functionality and flexibility of our 6TiSCH implementation. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24082414 |