Chronic effects of blast injury on the microvasculature in a transgenic mouse model of Alzheimer's disease related Aβ amyloidosis
Altered cerebrovascular function and accumulation of amyloid-β (Aβ) after traumatic brain injury (TBI) can contribute to chronic neuropathology and increase the risk for Alzheimer's disease (AD). TBI due to a blast-induced shock wave (bTBI) adversely affects the neurovascular unit (NVU) during...
Gespeichert in:
Veröffentlicht in: | Fluids and barriers of the CNS 2022-01, Vol.19 (1), p.5-5, Article 5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Altered cerebrovascular function and accumulation of amyloid-β (Aβ) after traumatic brain injury (TBI) can contribute to chronic neuropathology and increase the risk for Alzheimer's disease (AD). TBI due to a blast-induced shock wave (bTBI) adversely affects the neurovascular unit (NVU) during the acute period after injury. However, the chronic effects of bTBI and Aβ on cellular components of the NVU and capillary network are not well understood.
We exposed young adult (age range: 76-106 days) female transgenic (Tg) APP/PS1 mice, a model of AD-like Aβ amyloidosis, and wild type (Wt) mice to a single bTBI (~ 138 kPa or ~ 20 psi) or to a Sham procedure. At 3-months or 12-months survival after exposure, we quantified neocortical Aβ load in Tg mice, and percent contact area between aquaporin-4 (AQP4)-immunoreactive astrocytic end-feet and brain capillaries, numbers of PDGFRβ-immunoreactive pericytes, and capillary densities in both genotypes.
The astroglia AQP4-capillary contact area in the Tg-bTBI group was significantly lower than in the Tg-Sham group at 3-months survival. No significant changes in the AQP4-capillary contact area were observed in the Tg-bTBI group at 12-months survival or in the Wt groups. Capillary density in the Tg-bTBI group at 12-months survival was significantly higher compared to the Tg-Sham control and to the Tg-bTBI 3-months survival group. The Wt-bTBI group had significantly lower capillary density and pericyte numbers at 12-months survival compared to 3-months survival. When pericytes were quantified relative to capillary density, no significant differences were detected among the experimental groups, for both genotypes.
In conditions of high brain concentrations of human Aβ, bTBI exposure results in reduced AQP4 expression at the astroglia-microvascular interface, and in chronic capillary proliferation like what has been reported in AD. Long term microvascular changes after bTBI may contribute to the risk for developing chronic neurodegenerative disease later in life. |
---|---|
ISSN: | 2045-8118 2045-8118 |
DOI: | 10.1186/s12987-021-00301-z |